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FOR MISSILE MOTION CAUSED BY
STRONGLY NONLINEAR STATIC MOMENT

ABSTRACT

An improved quesi-linear substitution method is developed to treat properly
the influence of a cubic static moment on the modal damping of a missile acted
on by quite general nonlinear‘damping and Magnus moments; The predictidns of
this method are compared for various special cases with those of the more
accurate but much more complicated perturbation method. The new guasi-linear
theory predicts boundary curves for planar motion, almost circular motion and
almost planar motion which are quite close to those of the perturbation theory.
An original result of the theory is that all planar singular points for a non-
spinning missile whose moment coefficlents are only functions of the total angle
of attack are nodes. That 1s, almost planar motion with amplitude close to that
of a stable planar limit motion will tend to that motion.
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TABLE OF SYMBOLS
coefficients defined by Equation (17)
drag coefficient

1lift coefficient

static moment coefficient
damping moment coefficients
Magnus moment coefficient

complete elliptic integral of the second kind
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cubic damping moment coefficlent

axial moment of inertia

transverse moments of inertia

complete elliptic integral of the first kind
amplitude of the Jth mode

modulus of the elliptic integrals
axial radius of gyration, JIx/ml2

transverse radius of gyration, JI y/m;z = ~/Iz/m,z2

reference length
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Zssz kt2 CM - CL
7 a a

part of M which is function of 62
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part of M which 1s function of (52)
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cubic static moment coefficient
non-linear moment coefficient
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I
gyroscopic spin, P = TE %ﬁ
y

P/ |ﬁ°| 1/2

axial component of angular velocity
defined by Equation (87)
reference area

dimensionless distance along flight path

St -2
& E:L + kg CMpa]
01

[T]g=g'=o

cubic Magnus moment coefficient

components of velocity

magnitude of velocity, V = Ju. + Vv +w

cosine of total angle of attack
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o angle the flight path mekes with respect to the vertical

XJ damping coefficient of the Jjth mode
*
My defined by Equation (12)
c rg
P air density
g coefficient of exponential density function
'{ 04cos®
¢J phase angle of the jth mode
A
[ g, - 8
Superscript
! derivative with ¥espect to arclength, s
- complex conjugate
~ quantity related to non;rotating coordinate system
Subscripts
c quantities evaluated for circular motion
r quantities evaluated for planar motion



1. INTRODUCTION

In Reference 1, three different quasi-linear methods were described and
their different predictions of the nutational frequency for a missile with a
cubic static moment were compared with the exact result obtained by the use
of elliptic integrals. The best of the three was called the substitution
method and was employed to obtain the combined effect of a cubic static moment,
varying alr density and both linear and nonlinear damping moments. Although
this approach was not as accurate as the perturbation methodz’3 which uses the
exact elliptic function solution for no damping as the initial approximation,
it did give trends with a significant reduction in the necessary algebraic
work.

One difficulty with the substitution method was use of a rather strange
condition on the damping of the modal amplitudes:

1¢ . 18
Ke “+Kpe ©=0 (1)

A re-examination of this question has revealed a different substitution.method
which yields the same expression for the frequencies but does not make use of
Equation (1). This improved substitution method does lead to different ex-
pressions for modal demping which are the same ac those for the earlier substi-
tution method for planar motion but are closer to those obtained from the
perturbation method for almost circular motlon. It is the purpose of this
report to describe this new quasi-linear method.

2, THE IMPROVED SUBSTITUTION QUASI-LINEAR SOLUTION

The equation for the pitching and yawing motion of symmetric missiles can
be written in the form2

alt

1 +(n-;l-1p)'§"-(m+1pm)'§=o (2)

-where the various symbols are defined in the Table of Symbols.
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o8+ (B - 1P)E - (M +1PT)E

= - [ﬂ-no-;-'-]"i'+ I:(M-Mo)+1P(T-TO)] 't

where the zero subscript denotes the value of the aerodynamic quantities for
zero amplitude motion.

The left side of Equation (3) is the linearized version of Equation (2) and
has a solution in the form

‘ i i
i= Kle ¢l + Ke ¢2 (1)

The primary interest of a missile designer 1is usuall& the behavior of the

modal amplitudes KJ. This can conveniently be described by their logarithmic
derivatives

1

X .
K J .

J
For linear moments, the xJ's are constants but when the moments are nonlinear
the various quasi-linear analyses obtain A,'s which are functions of Kl and

K2'

J

We now differentiate Equations (L) twice, substitute in Equation (3) and
solve for the frequency and damping of the first mode,

(¢) - B M- A (0 +H)->~1

-1 [(2;6 - P +n¢ PT +¢:l

H : :] [). +1¢)+ 5 +i¢2)-— -{{I
- EM - M) + 4P(T - TOEI [1 +§-2- e'ia:l (6)
1

12



: - [(¢é)2 - p¢é +M - "2("2 + Ho) - xé]

-1 [(2;6; - P, + n°¢;_ - PT_ + ¢;:‘ (,%/Kl)e-ia
(6)

where 3 = ¢l -4,

For linearized motion, all the terms on the right of Equation (6) vanish
except for the term in braces. Since the left side of the linearized Eq. (6)
is constant or slowly varying due to density or Mach number induced variations
of Mo’ Ho, and To and spin or velocity variations in P, 1t can only equal the

periodic term in e'18

on the right side if both sides are zero. This condition
ylelds the usual linear relations. The nonlinear terms on the right, however,
will in general be periodic but their average or d. c. components will not
necessarlly be zero. This average will directly affect the terms on the left
side and it is the assumption of the quasi-linear method that the average is
the only influence of the nonlinedrities on the frequencies and damping
exponents. We, therefore, average Equation (6) over a period of nutation* and
neglect the small damping term in compar;son with Mo in the real part of this
equation,

($)% - P8 +M_- 1 Ez;ai - P, + HP - PT_ 4 ¢;:]

- %fﬂ (H-Ho-%'-) [¢i+¢é(%)e'ﬁ] i

2

. %; [(M-Mo) +1P(T - T ) 1+-::-2- e"18 @ ,
0 ! (7

> which is the cosine of the total angle of attack can be related to

[gj , the magnitude of the sine of the totsl angle of attack by the relation

Ballisticians frequently use the terms nutation and precession to distinguish
two modal osclllations. Nutation in this report has the classical meaning
assigned by top theory, i.e., the variation of the amplitude of the total

angle, | £ .

13



72=l-52 (8)

whereba-ltla-gf

62 can, then, be domputed from Equation (k)

3 A
82 = K + Kg + Kle(ei + et

1

=K§+l€+2klx2cos8 (9)

Since

Fo

we see that 7'/7 is an odd function of 3 and, therefors, only affects the real
part of Equation (7). If we make the assumption that H and T are functions of
82 and, thereby, are even functions of 3; the following equations may be obtained
from Equation (7).

(¢i)2_P¢i+%fﬂ{(;_') ¢é(;_i) sina+‘M [l-f-%cosa]

(11)
. ¢||
MoT At % -7 - | (12)
1l
2n
where A, 21‘(;; - I H l}'l + ¢é % os @
1

A A
- PT 1+If2-cos3 +M&sin¢ ag
X K
1 1
Similar expressions apply for the other mode.

14



This result differs from that of the substitution method of Reference 1
in the presence of 2¢ - P in the denominators of x and x . In that report,
¢ - ¢2 appeared. This is the same as 2¢ - P for pla.na.r motion but differs

for other motions.

t
For small geometricsl angles (7 = 0) and a cubic static moment
(M= M+ M252), Equation (11) and the corresponding equation for the other
mode yield frequency relations which are identical with those of Reference 1.

b=z N [+ ag)] (13)
b=z~ - [Lem(a +x5)] (14)

Equation (13) can be differentiated and substituted in Equation (12)

with the result:
“"ax?i 2’“2‘5
2 [} + m2(K2 2K§j] 2 [} + mz(K§7+ 2K§?]

% MO-P'¢' (K2
1 —;&:—l— M2m2M2 a2 E*me("?."z"i)]

l+

]
>
1]

L (ern [herh 0] e
. ™ it o | 1 a( + 2)

(15)
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A similar equation can be derived for the other mode.

xl 2m2K§ + xe l+ m2x§
FRREL IRECEr

Co (e |l w | mEg e
T\ & f, o] 1emyed v

(16)

Equations (15-16) may now be solved simultaneously for A, and .

Mt [IMT 8 x’éiﬁ— * 853 :Bﬁ ”Ju('M)
uO hMO MO M2 [+]

(17)
where the aJk's are defined in the Table.
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3. PLANAR MOTION

In the Table, values of the ajk's are computed for quasi-planar motion,
i.e., nutation between zero and 5max' For this motion, Kl = Ké = K, 6max
= Kl + K2 = 2K and the ratio of the maximum value of the cubic term to the

linear term is

3
_ MoPhax
= x———-—

Mobmax

m

- umzxa (18)

There are three types of cubic stetic moments which can cause a periodic
motion. These are shown in Figure 1 and may be described as follow32:

(a) Stable at small angles; more stable at larger angles (ﬁ; <0, M, < 0);
quasi-planar motion of all amplitudes possible (m > 0).

N
(b) Stable at small angles; less stsble at large angles (Mb <0, M, > 0);
amplitude of quasi-planar motion must be small enough to assure positive
M(-1<mc<O0).

(¢) Unstable at small angles; stable at large angles (ﬁ% >0, My < 0);
amplitude of quasi-planar motion must be large enough to ensure positive

average M (m < - 2).

Pure planar motion occurs when spin is zero., With zero spin, a number
of simplifications are possible.

~
MO = MO (19)

b= -py= N-m (142  (20)

* * *

M o=y = (21)
b4

a o= - = H [1 - cos 8] N R ) (22)
o} . ¢l

19



2 21(2(1 + cos ﬁ) (23)

8 =
(%) = - 4. s1n B (2)
M o= A
. M, M,
2(4 + 3m)n -s(m‘i)-sm(r)
= 2 T (25)
8 +9m

If the cause of the variation in the coefficients is changing air density due
to entering or leaving an exponential atmospherel,

Zl OZ

=L =% (26)
P

=15 -

[}

o(h+3a) (-8 .
Cay =y s (" -5) (27)
8 + 9m : '

Equation (27) was essentially derived by Coakley, Laitone and Ma.ssh and
predicts that the amplitude of planar motion for a type (b) moment has an

upper bound imposed by the requirement - 8/9 < m. For linear damping, however,
the more exact perturbation method of Reference 2 yields the relation:l’3

- b H ~
_ 0 0 g
MM T [é’ * TI] (28)
where
b, = (1 + m)a2 - 21na‘4 types (a) and (c)
=2(2 +m - 2a, - mah) type (b)

20
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"

-2
k 1-E/K
e p[ p/p:l

(2/3) k;a [2(1 + kl"j)m2 - 1]

8) =
Kp = K(kp) complete elliptic integral of the fimst kind
Ep = E(kp) complete elliptic integral of the second kind

K = z types (a) and (c)

p  2(1 +m)

“riE trpe (0)

The coefficlents of [ :-9 +-§ in Equations (27) and (28) are compared
for the three types of moments in Figures (2-4). With the exception of the
vicinity of m = - 8/9, the quasi-linear substitution value is a ressonsble
approximation of the more exact but quite complicated perturbation resuit.

4, AIMOST CIRCULAR MOTION

For almost circular motion, one modal amplitude is much larger than the
other and any static moment can be epproximated by a cubic in the vicinity of
the amplitude of the circular motion. In the Table, the coefficients, a K’
are computed for K, << Kl (The coefficients for K < < K, may be obtained
by interchanging Kl and K2 .) As in the case of planar motion, a number of

simple relations can be written for K, < < K, and constant spin.* (P = 0)

=% + V- Raem (29)

=% - J-Ra+em (30)

If Kl << K2 , the frequency equations are
1 P . v 2
¢l=§+J-M;°(l+2m)’ ¢2-2-J-M;i°(l+m) .

21




o
-1 J
g, - pr| of (31)
b J'-ﬁo(1+m) [ : '-l '

o]

:. : 1 2x {H [¢é + ¢i %cos a]
Lx J - ﬁo(l + 2m) o

(32)
K X
- PT 1+§l cosa] 'M2-K§ sina dz
N Ml M' Mé
4(1 + m) [Xl-k-—g + n -gi--_-M;
A = — (33)
2(2 + 3m)
Ml Ml
- 2n(1 * *
M = +3m“f+ "1'?5‘ ”‘2'1‘5‘
[} [¢]
(1 +m) M, M
‘e mUeE |§oC K (34)

Note that Equation (32) contains the very large quantity Kl/KQ. For most
nonlinearities, the averaging process of the integral formally ylelds a

* -
magnitude for ).2 of the order of 10 2 and certainly much less than one. This

need for the average of a large periodic term to vanish would lead us to expect
Equation (32) to be less accurate than Equation (31).
is a correct conjecture.

As we shall see, this

22



The exact elliptic integral solution2 places the following limitations

on m:
type (a) no limitation (m > 0).

type (b) only possible circular motions are those for which
-2/3<m<o0.

type (¢) only possible circular motions are those for which
M is negative (m < ~ 1).

The presence of 2 + 3m in the denominator of Equation (33) is the first time
a quasi-linear approach has been able to indicate the completely unexpected
limitation on circular motions for a type (b) moment which was previously
obtained through the use of elliptic integrals. This result is the first
evidence of the value of the improved substitution method in comparison with
that of Reference 1. The fallacious indication of trouble for m = - 1/2 in
Equation (34) reinforces our concern “or the value of the expressions for
damping of the small modal amplitude.

In order to derive an estimate for the accuracy of Equations (33-34), we
will now consider two speciali cases for which the coefficients are constants

(M;=Mé=0).

2 +2m _*

MErFT R M (35)
_ - 2m(l + m) * *
X2-(2+§n)(l$2m) Mot (26)

These ceses were treated by the perturbation method in Reference 2 and the
validity of our results will be determired by comparison with results of that
method.

23



4.1 CUBIC MAGNUS MOMENT

In the first example, we will consider a spinning missile with a cubic
Magnus moment (T = T, + szz)

% -Ho[l; + J-Mo(1+m)] + P [T°+T2ﬁ]

Ay =

1
24J- ﬁo(l + m)

(31)
-1/2
=-[31;(2Ho-|1+m| /'1\’(2T-H +2TK2]

. Ho[-g- VAT 2m)] - P[To +2’1‘2K211
2J- M (1 + 2n)

- -(,13)[2110 + »|1 + 2m‘ /e B(er - H_ + wzxiil -9

P

where ’f} = W

¢}

When the damping coefficient of the large mode as given by Equations (35)
and (37) 1s compared with that obtained from the perturbation methodz, we find
them to be identical! A comparison of the damping coefficients for the small
mode reveals that they do differ. A measure of the magnitude of this difference
can be obtained by considering the conditions for a circular motion singularity
which is a stable node. The location of the singularity is given by

(z)(l 3 [250 -

-1/2
l+m

?(2T° -H + zraxﬂ =0
(39)

24



Since smsll circular motion must grow and large circular motion must decay,

A
oH - ,1 +m | P(2To - Ho) <0 (ko)

A
PT, <0 (41)
These inequalities naturally are equivalent with those of Reference 2. The

final requirement is that in the vicinity of the singular point, almost
circular motion will approach circular motion.

*

By the use of Equations (38-39), T, may be eliminated from Inequality (h2).4

1/2 -1/2

l 4m | e

2[14'2 m ]Ho-ll'f'Zm‘ P(2TO-HO)>0
(43)

But Inequalities (40) and (43) for m outside the interval (-1, -1/2) ma& be

combined to yield

1/2 A 1/2 1/%]
2 | 1+ m| H <P -H)<2||1l+2n | +2 |1 +m | B,

(44)

Outside the forbidden interval of - 1 < m < - 1/2 Inequality (4k4) requires that
Ho be positive and

A
/2 P(er - EH)
l+m < ———— <|1+m
28

1/2 1/2

+ 2 Il +m I (45)

25



The corresponding inequality from Reference 2 is¥*

N
|1+m|l/2<'P—(-2—T-g§:-Hi)-< |§~#I|1+m| -1/2 (h6)
o]

These bounds are compared in Figure 5. As can be seen from the figure, the
upper bound is a good approximation.
4.2 CUBIC DAMPING MOMENTS AND ZERO SPIN
For & nonspinning missile, it has been shc:»wn5 that there are two cubic
damping moments which can affect the modal amplitudes:¥*

H=E_ + (E, + Mll)82 ‘ (47)
M=M_ + M252 + Mll(sa)' (48)

Since we are concerned with almost circular motion (Kl > > 1(2) , & much more
general moment can be considered. This moment will be approximated by
Equations (47-48) for almost circular motion. This moment can be written in
terms of the aerodynamic moment coefficients as*¥*#

2 '
= - *
c, +icC, i[(c°+c25 +C)§+d§] (49)
¥ 1/2 A A 1/2
The? of that report is |1 +m| Pform>-2/3and-P |l +n]|
for m < - 1.

*%
The presence of Mll in (47) is due to its definition as the coefficient of
2 t
¢ £ in Reference 5.

P ' -
The good approximastion ¢ =1 (q + ir) &V 1 has been made in Equation (49)

so that C and C appear &s & sum.
Mq Md
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* ' ]
where ¢ e ((52)) is a function of (62)

2

d d (52) is a function of &

c*(o) =0 and
a (0)=¢ + C

Mqo Mdo

The coefficients of the differential equation of pitching and yawing

motion assume the form

H= g_%’é [fLa - Cp - kf dJ = H(Bg) (50)
M= gﬁ kjf [eo + c252 + c*] =M + M252 + M*( (62)') (51)

*
If H and M are differentiasble functions, they can be expanded about the
1
circular motion with amplitude 5, snd amplitude derivative (62) e =0

H= H + [-d-lig] (52 - 52) (52)
[+ as . [o]
2 Ja 2,
M=M 8 8
o * M0+ l:m] . (87) (53)

vhere Hc = 3(82)

c

[ ]
as e as 52 ) 52
c

| an” . [am* ]
a(s™)| ) (62} = o
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Ié +l§ +2l(ll(2 cosz
(%) = - 2K, (4, - #,) s1n B

Equations (52-53) are essentially of the same form as Equations (47-48) but
allow us to consider much more complicated moments.

For these moments and almost cilrcular motion,

INERIC) {Hc + [{:-:fg] (& - 52) | (54)
(]
* * 1 + m +m
M= r + (3) [ ] V Tv= d(G)] 1+ '1'?51" Ki
(55)

The actual damping exponent for the larger mode can be obtained from Equations
(35) and (54) and is exactly that given by the perturbation method.

A = “m)[ [—z (Kab)] (56)

The conditions on )‘1 for a stable node at Kl = ac are

B, =0 (57)

[@2] >0 (58)
as c

‘According to Equation (36) the actual damping of the smaller mode near the
* *
singularity ().l = 0) is Ay. For a stable node this must be negative.

28



+m * l+m
-'-[d—ﬂ'z] Jrrxf"'[f:ir'] Lol | <0
di c
c o)

) (8%) e
(59)
or
51/8.
1+

l+m
c

The corresponding inequality derived from the perturbation method is

a aH [l tm, (6
. E—T, 1
[d(aé)] o/[;;{lc ) * !

These upper bounds are compared in Figure 6. It is interesting to note that
* *

the M function 1s necessary for a circular limit cycle, i.e. M = O does

not satisfy Inequality (61).

5. ALMOST PLANAR MOTION

Another important special type of motion is almost planar motion (Kl = Kz).
For this case somewhat more lengthy algebrsa is reguired but fairly general
results are attalnable. For planar motion Kl = K2 = Kp and

si = 2K§(l + cos ’;3) (62)
(62), = - 26, otn B (63)

o>
]

J- (4 + 5m) (64)

WM
.where m = -2
p M,

*
If Hand M are differentiable functions, they can be expanded about planar
motion with amplitude 2Kp.
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dH 2 2
+ [;?] [5 -Bp] (65)
P
e o] o]
P d(6

wvhere the p subscript denotes quantities evaluated for planar motion with
2 2 2, 2,
8 = and (5 = .
6, and (87) = (5,
For a nonspinning missile,
2n

l+--,— cosa +M (—P;r(-e—) Bing}da
1Ky (67)

In order to determine the character of a planar singularity amplitude plane,
differential equations should be derived for the neighborhood of the singularity.
The variables €, and €, are introduced for this purpose and squares of these
variables will be omitted in comparison with the variables themselves.

KJ = Kp(l + eJ) ' (68)
6 - 62 = 2(1 + cos B) (e + ) (69)
Al t 1
¢ = ¢l = ¢2

=(1/2) [J- M [h + mp(3 + 2, + hee)J #4- M, [h + mp(5 +hey + 2523J
' 3m
B 8p [:l e el Ol eeﬂ (70)
p .
(82)' - (52)1; = [— 2K1K28'sin 8] - E- 21(‘12)8; sin 3]
: 8 + 9m
- - xgﬁp sin § (ﬁ-—ﬁ:) () +€p) (71)



' 4 + 2m
;},2-2-2- R [r;-ﬁgJ (€) = ) (12)

1M P

e s 7 b +2nm 4
. . Xl = )'p " In Hp -ET-Ei (el - ea) cos
(o]

A
[.h(l +m )el- (4 +m)eEJLsin¢
?'(lwim)

- 2 L ] ( ) (el+ 22) sin 8 dﬁ (75)
2n
where x; = - T::Lt f Eﬂp)(l- coé 8) + (M;) (‘2“?’2‘@)] da
o) P

+ 2 [-g-':qz] 1(2(e:L + 52) sinzg -

*
The terms involving [%] and Mp may be integrated by parts and the
P

as

result reduced by routine algebra so that Equation (73) assumes the much
simpler form

)

A m [(8 + 5mp)e +m 62] [m €, + (16 + 1lm )eaj r
- [(16 +,l7mp)el + 7mpe2] ra} (74)
5], %

i (] , ’

where J=0,2

31



cos J3d3 =02 .

’:\3'
"
Al

8%) 3 ‘ d(s

on

[HJl =% J‘ Hp cos 6‘16\
(o)
Similarly
. fﬂ]
Mg = Ay - [m e +(8+ 5mp)52] + [(16 + 1 )e, + mpeej r,
- [?mpel + (16 + 17mp)gé] r?j} (75)

The numerical subscript on the outside of the bracketed expressions in the
definition of xJ identifies that expression as a particular Fourier cosine
coefficlent. It is quite surprising that the influence of H on x is ccmpletely
determined by its first order Fourier cosine coefficient. The influence of M ,
however, is specified by the zeroth and second order Fourier cosine coefficients
of its first derivative. These coefficients are computed for fixed modal
amplitudes, KJ’ and therefore, are functions of these amplitudes.

*
For & planar singularity xp = 0 and A

3 can be computed from the following
special form of Equation (17)

* .
Ay = aJl).I +850hy (76)

2(h+3m)(8+7m)

where 8y = 8y = T8+ 9m ICE 5m
- ko (4 + 3m )

81p % 8 © (8 + 9m_)(8 + 5m_)

p p



(=]

. 1l
o kl = - W bel + 362] (77)
(]
1
Xe = - W [Eel + b62] (78)

2
where a = - mp(8 + 5mp) + (128 + 200mp + 75mp) r,

2
- (ahmp + 15mp) T,

2
b= 6h+ 9m + 3m - 3 (8+5m)

2
- (128 + 2h8mp + 105mp) r,

The differential equation for solution curves in the vicinity of a planar
singularity in the amplitude plane is

2l utie (79)
del xl bel + 8¢,
According to Reference 6, the singularity must be either a saddle point or a
node. It is a node if a2 - b2 is negative and a saddle if 32 - b2 is positive.

a =b (a + b)(a -~ b)

- 4B +5m)(8 +9m) [2(2 +n) - (x, +7,)(8 +5m)]

x (44 m)02 +20) - 42 + 2m) | (80)

Note that if r, and r, vanlsh and m.p is outside the interval (-2, - 8/9),
32 - b2 is negative. Thus, if the aerodynamic moment coefficients are

1]
functions of 62 alone and not functions of (52) , all planar singularities
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are nodes and almost planar motions near & planar singular motion will tend
to the planar singular motion if neighboring planar motions tend to the planar
singular motion.¥* ‘

Another interesting special case is that when the moment coefficients
are precisely those defined by Equations (47-48)

(2] - vy (62)
as®) d u
[—EM;T - 0 | (83)
a(s")
e r, =- Hémil N ~ (u)
5, = 0 | | (85)

Therefore, a planar singularity 1s a node if

(8 + 9mp)(8 + 5mp)(h + jmp)(l + 2ro) [h + 2mp - r°(8 + 5mp)] >0 (86)

When mp is outside the interval ( - 2, - 8/9) this Inequality is equivalent

to
- Mll 4 + 2nm
-1l< Hz <E--—!-—71;1L ) (87)
P
¥

For circular singularities, Equation (60) shows the circular singularities
are always saddles if the moment coefficlents are functions of 62 alone,

i.e., dM*
c

a(s")

3k



In Réference 3, the perturbation method was applied to almost planar motion
and after considerable tedious algebra, inequalities like (87) were obtained.
The lower bounds are identical but the perturbation method's upper bound is
expressed in terms of complete elliptic integrals and differs from that of
Inequality (87) when m # O. These two boundary curves are compared in
Pigure 7. The much more easily derived bound of Inequality (87) is surpris-

ingly good.
SUMMARY

1. A quasi-linear substitution method has been derived on plausible
assumptions and compared with the more exact results of the more complicated

perturbation method.
2. The plenar motion predictions are good when m is not near - 8/9.

3. The damping of the dominant mode of almost circular motion is exactly
predicted while the damping of the other mode yields approximately correct
stability boundaries.

4. The character of planar singularities can be reasonably well deter-
mired by this method.

5. In view of the above, the algebraically much simpler quasi-linear
method can be used to obtain approximate stability boundaries in the presence

Clotoe R, eyt

of a strongly nonlinear static moment.
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